The energy transport equation based on enthalpy is given as follows:

\[\frac{\partial \rho h}{\partial t} + \div (\rho \u h) + \frac{\partial \rho K}{\partial t} + \div (\rho \u K) - \frac{\partial p}{\partial t} - \div (\alpha_{eff} \grad h) = \rho \u \cdot \vec{g} + f_{rad}(h) + \vec{S}_{\rho, h}\]

The energy transport equation based on internal energy is given as follows:

\[\frac{\partial \rho e}{\partial t} + \div (\rho \u e) + \frac{\partial \rho K}{\partial t} + \div (\rho \u K) + \div (p \u) - \div (\alpha_{eff} \grad e) = \rho \u \cdot \vec{g} + f_{rad}(e) + \vec{S}_{\rho, e}\]

where:

Property Description
\(t\) Time
\(\rho\) Density
\(h\) Enthalpy
\(e\) Internal energy
\(\u\) Velocity
\(K\) Kinetic energy
\(p\) Pressure
\(\alpha_{eff}\) Effective thermal diffusivity
\(\vec{g}\) Gravitational acceleration
\(f_{rad}\) Radiation function
\(\vec{S}\) Source term through fvOption