For cases that the hydrostatic pressure contribution \(\rho ( \vec{g} \dprod \vec{h} )\) is important, e.g. for buoyant and multiphase cases, it is numerically convenient to solve for an alternative pressure defined by \(p' = p - \rho ( \vec{g} \dprod \vec{h} ).\) In OpenFOAM solver applications the \(p'\) pressure term is named p_rgh. The momentum equation

\[\ddt{\rho \u} + \div ( \rho \u \otimes \u ) - \div ( \mu_{\eff} \grad \u ) = - \grad p + \rho \vec{g}\]

is transformed to use \(p'\):

\[p' = p - \rho ( \vec{g} \dprod \vec{h} ).\]

After the following substitutions:

\[\begin{align} - p & = - p' - \rho ( \vec{g} \dprod \vec{h} ) \\ - \grad p & = - \grad( p') - \grad ( \rho ( \vec{g} \dprod \vec{h} ) ) \\ & = - \grad( p') - \rho \vec{g} \dprod \grad \vec{h} - \vec{h} \dprod \grad(\rho \vec{g}) \\ & = - \grad( p') - \rho \vec{g} \dprod \tensor{I} - \vec{g} \dprod \vec{h} \grad (\rho) - \cancelto{0}{\rho \vec{h} \dprod \grad (\vec{g})} \\ & = - \grad( p') - \rho \vec{g} - \vec{g} \dprod \vec{h} \grad \rho \end{align}\]

where, for CFD meshes the term \(\grad \vec{h}\) is given by the gradient of the cell centres, which equates to the tensor \(\tensor{I}\), the momentum equation becomes:

\[\ddt{\rho \u} + \div ( \rho \u \otimes \u ) - \div ( \mu_{\eff} \grad \u ) = - \grad p' - \vec{g} \dprod \vec{h} \grad \rho\]

For constant density applications this can be further simplified to

\[\ddt{\rho \u} + \div ( \rho \u \otimes \u ) - \div ( \mu_{\eff} \grad \u ) = - \grad p'\]

For examples of the use of this variable transformation, see: