## Properties🔗

• One equation model based on a modified turbulence viscosity, $$\tilde{\nu}$$

## Model equations🔗

The $$\tilde{\nu}$$ transport equation is given by:

$\Ddt{\rho \tilde{\nu}} = \div \left( \rho D_\tilde{\nu} \tilde{\nu} \right) + \frac{C_{b2}}{\sigma_{\nu_t}} \rho \mag{\grad \tilde{\nu}}^2 + C_{b1} \rho \tilde{S} \tilde{\nu} \left(1 - f_{t2}\right) - \left(C_{w1} f_w - \frac{C_{b1}}{\kappa^2} f_{t2}\right) \rho \frac{\tilde{\nu}^2}{\tilde{d}^2} + S_\tilde{\nu}$

where the length scale $$\tilde{d}$$ is defined by:

$\tilde{d} = \min \left( \Psi C_{DES} \Delta, y \right)$

and $$\Psi$$ is the low Reynolds number correction function:

$\Psi^2 = \min \left[ 10^2, \frac{1 - \frac{1 - C_{b1}}{C_{w1} \kappa^2 f_w^{*}} \left[ f_{t2} + \left(1 - f_{t2}\right) f_{v2} \right]}{f_{v1} \max \left(10^{-10}, 1-f_{t2} \right)} \right]$

## Default model coefficients🔗

$$\sigma_{\nu_t}$$ $$C_{b1}$$ $$C_{b2}$$ $$C_{w1}$$ $$C_{w2}$$ $$C_{w3}$$
2/3 0.1355 0.622 $$\frac{C_{b1}}{\kappa^2} + \frac{1 + C_{b2}}{\sigma_{\nu_t}}$$ 0.3 2
$$C_{v1}$$ $$C_{s}$$ $$C_{\mathit{DES}}$$ $$C_{k}$$ $$C_{t3}$$ $$C_{t4}$$ $$f_w^{*}$$
7.1 0.3 0.65 0.07 1.2 0.5 0.424

## Usage🔗

The model is specified using:

LES
{
turbulence      on;
LESModel        SpalartAllmarasDES;

// Optional entries
SpalartAllmarasDESCoeffs
{
// Apply low-Reynolds number correction; default = yes
lowReCorrection     yes;
}
}


## Boundary conditions🔗

Inlet

Outlet

Walls

• wall functions

## Further information🔗

Source code:

References:

• Principle reference: Spalart et al. 
• Low Reynolds number correction: Spalart et al.