1. Bergman, T. L., Bergman, T. L., Incropera, F. P., Dewitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer, 7th Edition, Chapter 10. John Wiley & Sons.
  2. Alletto, M., Radi, A., Adib, J., Langner, J., Peralta, C., Altmikus, A., & Letzel, M. (2018). E-Wind: Steady state CFD approach for stratified flows used for site assessment at Enercon. Journal of Physics: Conference Series, 1037(7), 072020. https://doi.org/https://doi.org/10.1088/1742-6596/1037/7/072020
  3. Amoreira, L. J., & Oliveira, P. J. (2010). Comparison of Different Formulations for the Numerical Calculation of Unsteady Incompressible Viscoelastic Fluid Flow. Advances in Applied Mathematics and Mechanics, 2(4), 483–502. https://doi.org/10.4208/aamm.10-m1010
  4. Apsley, D. D., & Castro, I. P. (1997). A limited-length-scale k-varepsilon model for the neutral and stably-stratified atmospheric boundary layer. Boundary-Layer Meteorology, 83(1), 75–98. https://doi.org/https://doi.org/10.1023/A:1000252210512
  5. Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J. M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., & van der Vorst, H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM. http://www.netlib.org/linalg/html_templates/Templates.html
  6. Betts, P. L., & Bokhari, I. H. (2000). Experiments on turbulent natural convection in an enclosed tall cavity. International Journal of Heat and Fluid Flow, 21(6), 675–683. https://doi.org/10.1016/S0142-727X(00)00033-3
  7. Boussinesq, J. (1877). Essai sur la théorie des eaux courantes. Imprimerie Nationale.
  8. Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook, 2nd edition. John Wiley & Sons. https://doi.org/https://doi.org/10.1002/9781119992714
  9. Caretto, L. S., Gosman, A. D., Patankar, S. V., & Spalding, D. B. (1972). Two Calculation Procedures for Steady, Three-Dimensional Flows With Recirculation. Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, 19, 60–68. https://doi.org/10.1007/BFb0112677
  10. Comte-Bellot, G., & Corrsin, S. (1971). Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. Journal of Fluid Mechanics, 48, 273–337. https://doi.org/10.1017/S0022112071001599
  11. Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society, 43(1), 50–67. https://doi.org/10.1017/S0305004100023197
  12. Dafa’Alla, A. A., Juntasaro, E., & Gibson, M. M. (1996). Calculation of oscillating boundary layers with the q-ζ turbulence model. Engineering Turbulence Modelling and Experiments, 141–150. https://doi.org/10.1016/B978-0-444-82463-9.50020-4
  13. Daly, B. J., & Harlow, F. H. (1970). Transport Equations in Turbulence. The Physics of Fluids, 13(11). https://doi.org/10.1063/1.1692845
  14. Driver, D. M., & Seegmiller, H. L. (1985). Features of a reattaching turbulent shear layer in divergent channel flow. AIAA Journal, 23(2), 163–171. https://doi.org/10.2514/3.8890
  15. Eberly, D. (2009). Polyhedral Mass Properties (Revisited). https://www.geometrictools.com/DocumentationPolyhedralMassProperties.pdf
  16. El Tahry, S. H. (1983). k-epsilon equation for compressible reciprocating engine flows. Journal of Energy, 7(4), 345–353. https://doi.org/10.2514/3.48086
  17. Fares, E., & Schroder, W. (2002). A differential equation for appropximate wall distance. International Journal for Numerical Methods in Fluids, 39, 743–762. https://doi.org/10.1002/fld.348
  18. Furst, J. (2013). Numerical simulation of transitional flows with laminar kinetic energy. Engineering Mechanics, 20(5), 379–388. https://doi.org/10.1007/s00607-012-0266-0
  19. Gibson, M. M., & Launder, B. (1978). Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer. Journal of Fluid Mechanics, 86(3), 491–511. https://doi.org/10.1017/S0022112078001251
  20. Gibson, M. M., & Dafa’Alla, A. A. (1995). Two-equation model for turbulent wall flow. AIAA Journal, 33(8), 1514–1518. https://doi.org/10.2514/3.12691
  21. Gregory, N., & O’Reilly, C. L. (1970). Low-speed aerodynamic characteristics of NACA 0012 aerofoil sections, including the effects of upper-surface roughness simulation hoar frost (Reports and Memoranda No. 3726; Issue No. 3726). National Physics Laboratory, Teddington, UK. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/N7111016.xhtml
  22. Gritskevich, M. S., Garbaruk, A. V., Schütze, J., & Menter, F. R. (2012). Development of DDES and IDDES Formulations for the k-w Shear Stress Transport Model. Flow, Turbulence and Combustion, 88(3), 431–449. https://doi.org/10.1007/s10494-011-9378-4
  23. Harten, A. (1983). High Resolution Schemes for Hyperbolic Conservation Laws. Journal of Computational Physics, 49(3), 357–393. https://doi.org/10.1016/0021-9991(83)90136-5
  24. Hellsten, A. (1997). Some Improvements in Menter’s k - w SST Turbulence Model. 29th AIAA Fluid Dynamics Conference, AIAA-98-2554. https://doi.org/10.2514/6.1998-2554
  25. Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40–65. https://doi.org/10.1016/0021-9991(86)90099-9
  26. Jasak, H., Weller, H. G., & Gosman, A. D. (1999). High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes. International Journal for Numerical Methods in Fluids, 31, 431–449. https://doi.org/10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
  27. Kim, W.-W., & Menon, S. (1995). A new dynamic one-equation subgrid-scale model for large eddy simulations. 33rd Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1995-356
  28. Turbulence statistics in fully developed channel flow at low Reynolds number. (1987). Journal of Fluid Mechanics, 177, 133–166. https://doi.org/10.1017/S0022112087000892
  29. CFL3D User’s Manual (Version 5.0) (Manual TM-1998-208444; Issue TM-1998-208444). (1997). (Issue). NASA Langley Research Center; Hampton, VA, United States. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980218172.pdf
  30. van der Laan, M. P., Sørensen, N. N., Réthoré, P.-E., Mann, J., Kelly, M. C., Troldborg, N., Hansen, K. S., & Murcia, J. P. (2015). The k-ϵ-fP model applied to wind farms. Wind Energy, 18(12), 2065–2084. https://doi.org/https://doi.org/10.1002/we.1804
  31. van der Laan, M. P., Sørensen, N. N., Réthoré, P.-E., Mann, J., Kelly, M. C., & Troldborg, N. (2015). The k-varepsilon-fP model applied to double wind turbine wakes using different actuator disk force methods. Wind Energy, 18(12), 2223–2240. https://doi.org/https://doi.org/10.1002/we.1816
  32. Ladson, C. L. (1988). Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section (NASA Technical Memorandum NASA-TM-4074; Issue NASA-TM-4074). NASA Langley Research Center; Hampton, VA, United States. https://ntrs.nasa.gov/search.jsp?R=19880019495
  33. Langner, J. (2016). Implementierung und validierung von RANS-modellen der thermisch geschichteten, atmosphärischen grenzschicht [Master's thesis]. Technische Universität Berlin.
  34. Langtry, R. B. (2006). A Correlation-Based Transition Model using Local Variables for Unstructured Parallelized CFD codes [PhD Thesis]. Stuttgart.
  35. Langtry, R. B., & Menter, F. R. (2009). Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal, 47(12), 2894–2906. https://doi.org/10.2514/1.42362
  36. Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269–289. https://doi.org/10.1016/0045-7825(74)90029-2
  37. Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the Development of a Reynolds-Stress Turbulence Closure. Journal of Fluid Mechanics, 68, 537–566. https://doi.org/10.1017/S0022112075001814
  38. Laurence, D. R., Uribe, J. C., & Utyuzhnikov, S. V. (2005). A robust formulation of the v2-f model. Flow, Turbulence and Combustion, 73(3-4), 169–185. https://doi.org/10.1007/s10494-005-1974-8
  39. Lee, M., & Moser, R. D. (2015). Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. Journal of Fluid Mechanics, 774, 395–415. https://doi.org/10.1017/jfm.2015.268
  40. Leonard, B. P. (1988). Simple high-accuracy resolution program for convective modelling of discontinuities. International Journal for Numerical Methods in Fluids, 8(10). https://doi.org/10.1002/fld.1650081013
  41. Leonard, B. P. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19(1), 59–98. https://doi.org/10.1016/0045-7825(79)90034-3
  42. Lien, F. S., Chen, W. L., & Leschziner, M. A. (1996). Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations. Engineering Turbulence Modelling and Experiments 3, 91–100. https://doi.org/10.1016/B978-0-444-82463-9.50015-0
  43. Lien, F. S., & Leschziner, M. A. (1993). A Pressure-Velocity Solution Strategy for Compressible Flow and Its Application to Shock/Boundary-Layer Interaction Using Second-Moment Turbulence Closure. Journal of Fluids Engineering, 115(4), 717–725. https://doi.org/10.1115/1.2910204
  44. Lien, F. S., & Leschziner, M. A. (1994). Upstream monotonic interpolation for scalar transport with application to complex turbulent flows. International Journal for Numerical Methods in Fluids, 19(6), 527–548. https://doi.org/10.1002/fld.1650190606
  45. Manceau, R. A two-step automatic initialization procedure for RANS computations. (unpublished).
  46. Martinuzzi, R., & Tropea, C. (1993). The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow. Journal of Fluids Engineering, 115(1), 85–92. https://doi.org/doi:10.1115/1.2910118
  47. McCroskey, W. J. (1987). A critical assessment of wind tunnel results for the NACA 0012 airfoil (NASA Technical Memorandum NASA-TM-100019; Issue NASA-TM-100019). NASA Ames Research Center; Moffett Field, CA, United States. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880002254.pdf
  48. Menter, F., & Esch, T. (2001). Elements of Industrial Heat Transfer Predictions.
  49. Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, 625–632.
  50. Menter, F. R., Langtry, R., & Volker, S. (2006). Transition Modelling for General Purpose CFD Codes. Flow, Turbulence and Combustion, 77(1), 277–303. https://doi.org/10.1007/s10494-006-9047-1
  51. Moser, R. D., Kim, J., & Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to $ textRe_τ$=590. Physics of Fluids, 11(4), 943–945. https://doi.org/10.1063/1.869966
  52. NASA Langley Research Center. (2015). The Menter Shear Stress Transport Turbulence Model. In Turbulence Modeling Resource. http://turbmodels.larc.nasa.gov/sst.html
  53. The Langley Research Center Turbulence Modeling Resource. (2018). 2DN00: 2D NACA 0012 Airfoil Validation Case. https://turbmodels.larc.nasa.gov/naca0012_val.html
  54. The Langley Research Center Turbulence Modeling Resource. (2018). The Spalart-Allmaras Turbulence Model. https://turbmodels.larc.nasa.gov/spalart.html
  55. Nicoud, F., & Ducros, F. (1999). Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turbulence and Combustion, 62(3), 183–200. https://doi.org/10.1023/A:1009995426001
  56. Obukhov, A. M. (1971). Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorology, 2(1), 7–29. https://doi.org/https://doi.org/10.1007/BF00718085
  57. Peng, D. Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Ind. Eng. Chem. Fundamen., 15(1), 59–64. https://doi.org/10.1021/i160057a011
  58. Poletto, R., Craft, T., & Revell, A. (2013). A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES. Flow, Turbulence and Combustion, 91(3), 519–539. https://doi.org/10.1007/s10494-013-9488-2
  59. Pope, S. B. (2000). Turbulent flows. Cambridge Univ. Press. https://doi.org/https://doi.org/10.1017/CBO9780511840531
  60. Rumsey, C. L., & Spalart, P. R. (2009). Turbulence model behavior in low Reynolds number regions of aerodynamic flowfields. AIAA Journal, 47(4), 982–993. https://doi.org/https://doi.org/10.2514/1.39947
  61. Saad, T., Cline, D., Stoll, R., & Sutherland, J. C. (2017). Scalable tools for generating synthetic isotropic turbulence with arbitrary spectra. AIAA Journal, 55(1), 327–331. https://doi.org/10.2514/1.J055230
  62. Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-e eddy viscosity model for high:reynolds number turbulent flows. Computers and Fluids, 24(3), 227–238.
  63. Shih, T. H., Zhu, J., & Lumley, J. (1993). A Realizable Reynolds Stress Algebraic Equation Model (NASA Technical Memorandum No.105993; Issue 105993).
  64. Smagorinsky, J. (1963). General Circulation Experiments with the Primitive Equations I. the Basic Experiment*. Monthly Weather Review, 91(3), 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  65. Sogachev, A., & Panferov, O. (2006). Modification of two-equation models to account for plant drag. Boundary-Layer Meteorology, 121(2), 229–266. https://doi.org/https://doi.org/10.1007/s10546-006-9073-5
  66. Sogachev, A., Kelly, M., & Leclerc, M. Y. (2012). Consistent two-equation closure modelling for atmospheric research: buoyancy and vegetation implementations. Boundary-Layer Meteorology, 145(2), 307–327. https://doi.org/https://doi.org/10.1007/s10546-012-9726-5
  67. Spalart, P. R., Jou, W.-H., Strelets, M., & Allmaras, S. R. (1997). Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES. Advances in DNS/LES, 137–147.
  68. Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics, 20(3), 181–195. https://doi.org/10.1007/s00162-006-0015-0
  69. Spalart, P. R., & Allmaras, S. R. (1994). A One-Equation Turbulence Model for Aerodynamic Flows. Recherche Aerospatiale, 1, 5–21.
  70. Spalart, P., Shur, M. L., Strelets, M., & Travin, A. (2012). Sensitivity of Landing-Gear Noise Predictions by Large-Eddy Simulation to Numerics and Resolution. Aerospace Sciences Meetings. https://doi.org/10.2514/6.2012-1174
  71. Spalding, D. B. (1994). Calculation of turbulent heat transfer in cluttered spaces. Proceedings of the 10th International Heat Transfer Conference.
  72. Spalding, D. B. (1972). A novel finite difference formulation for differential expressions involving both first and second derivatives. International Journal for Numerical Methods in Engineering, 4(4), 551–559. https://doi.org/10.1002/nme.1620040409
  73. Speziale, C. G., Sarker, S., & Gatski, T. B. (1991). Modelling the pressure-strain correlation of turbulence. An invariant dynamical systems approach. Journal of Fluid Mechanics, 227, 245–272. https://doi.org/10.1017/S0022112091000101
  74. Strelets, M. (2001). Detached eddy simulation of massively separated flows. 39th Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2001-879
  75. Sutherland, W. (1893). LII. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223), 507–531. https://doi.org/10.1080/14786449308620508
  76. Taubin, G. (1995). A signal processing approach to fair surface design (IBM Research Report Rc-19923; Issue Rc-19923).
  77. Taylor, G. I. (1923). VIII. Stability of a viscous liquid contained between two rotating cylinders. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 223(605-615), 289–343.
  78. Travin, A., Shur, M., Strelets, M., & Spalart, P. R. (2000). Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. Advances in LES of Complex Flows, 65, 239–254. https://doi.org/10.1007/0-306-48383-1_16
  79. Truesdell, C. (2018). The Kinematics of Vorticity. Dover Publications.
  80. Tucker, P. G. (2003). Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics, 190(1), 229–248. https://doi.org/10.1016/S0021-9991(03)00272-9
  81. van der Vorst, H. A. (1992). Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13(2), 631–644. https://doi.org/10.1137/0913035
  82. Van Doormaal, J. P., & Raithby, G. D. (1984). Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numerical Heat Transfer, 7(2). https://doi.org/10.1080/01495728408961817
  83. van Leer, B. (1974). Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-order Scheme. Journal of Computational Physics, 14(4), 361–370. https://doi.org/10.1016/0021-9991(74)90019-9
  84. Van Driest, E. R. (1956). On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23(11), 1007–1011. https://doi.org/10.2514/8.3713
  85. Walters, K., & Cokljat, D. (2008). A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow. 130(12). https://doi.org/10.1115/1.2979230
  86. Warming, R. F., & Beam, M. (1976). Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows. AIAA Journal, 14(9), 1241–1249. https://doi.org/10.2514/3.61457
  87. Waters, N. D., & King, M. J. (1970). Unsteady flow of an elastico-viscous liquid. Rheologica Acta, 9(3), 345–355. https://doi.org/10.1007/BF01975401
  88. Wieghardt, K., & Tillman, W. (1951). On the Turbulent Friction Layer for Rising Pressure (NACA TM-1314; Issue NACA TM-1314).
  89. Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc., 77(14), 3701–3707. https://doi.org/10.1021/ja01619a008
  90. Yakhot, V., Orszag, S. A., Thangam, S., & Speziale, C. G. (1992). Development of Turbulence Models for Shear Flows by a Double Expansion technique. Physics of Fluids A Fluid Dynamics, 4(7). https://doi.org/10.1063/1.858424
  91. Yoshizawa, A. (1986). Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Physics of Fluids, 29(7), 2152–2164. https://doi.org/10.1063/1.865552